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A couple of reminders...

1. Tutorial for W6 and W7 (submit your complete report before 11 PM,
March 7th)
2. Assignment 2: Friday, March 8, 2019, 12:00 AM

Related:

hitps://curiositybits.shinyapps.io/PH_Tracker dashboard/



https://curiositybits.shinyapps.io/PH_Tracker_dashboard/
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073791

Word clouds created on Facebook posts. Whom do you think wrote the posts:
extroverts or introverts?
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https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073791

Posted by male or female users?
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https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073791



https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073791

Insights from
text

IBM Watson

https://personality-insights-
demo.ng.bluemix.net

Personality Portrait
28145 words analyzed: Very Strong Analysis

Summary
You are particular, explosive and expressive.

You are self-controlled: you have control over your
desires, which are not particularly intense. You are
adventurous: you are eager to experience new things.
And you are dutiful: you take rules and obligations
seriously, even when they're inconvenient.

Experiences that give a sense of efficiency hold some
appeal to you.

You are relatively unconcerned with both taking
pleasure in life and helping others. You prefer activities
with a purpose greater than just personal enjoyment.
And you think people can handle their own business
without interference.

How did we get this?

You are likely to

(@ be sensitive to ownership cost
when buying automobiles

() like historical movies

() volunteer for social causes

You are unlikely to

(®) be influenced by social media
during product purchases

(%) prefer style when buying clothes

(®) like rap music


https://personality-insights-demo.ng.bluemix.net
https://personality-insights-demo.ng.bluemix.net

Analysis of tweets from weiaiwayne

|I1$ig hts from Sé::ﬁ (995 most recent words - 4th March, 2019)
= Twitter
text Ed Facebook

Emotional Style

Upbeat (Average) @ _‘
Ana |yze Words Worried (Low) | 35| [N

poory (rverece) | 52| |

Depressed (High) ‘ 65H‘ _
Social Style

Plugged In (Low) ‘@ _
Personable (Average) ‘E] _‘
Arrogant/Distant (Average) ’E _
Spacy/Valley girl (Average) ‘E] _

Thinking Style

Analytic (Average) \El _
Sensory (Low) “E} -
In-the-moment (Low) ‘El _

Analyzewords.com



https://www.analyzewords.com/

The science behind the algorithm

“A well-accepted theory of psychology, marketing, and other fields is that human
language reflects personality, thinking style, social connections, and emotional
states. The frequency with which people use certain categories of words can

provide clues to these characteristics.”

More at
https://cloud.ibm.com/docs/services/personality-insights?topic=personality-insights

-science#science



https://cloud.ibm.com/docs/services/personality-insights?topic=personality-insights-science#science
https://cloud.ibm.com/docs/services/personality-insights?topic=personality-insights-science#science

The science behind the algorithm

Search: James W. Pennebaker and Jeff Hancock


http://www.youtube.com/watch?v=FuOGpzSYxt8
http://www.youtube.com/watch?v=c-BhuuKMNcU

Review of concepts

Corpus and collection

/ Review 1

Review 2

\ Review 3

‘N Review 4




Review of concepts

features
docs awesome projector traditional boston experience
Boston 120 1 2 862 143
Denver 215 2 0] 0] 106

Rhode Island 113 0 3 10 158



Review of concepts

"Awesome projector. Traditional Boston experience, with a great location!

4

[1] "Awesome" "projector” " "Traditional" "Boston"
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New concepts

Stop words: filter words because they are
extremely common words but appear to be of little
value.

Stop words
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New concepts

There are standard stop word lists for most languages
https://stopwords.quanteda.io/
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https://stopwords.quanteda.io/

New concepts

PyLWC

e Smallish words, or function words (articles, prepositions, pronouns), as
opposed to content words

e Linguistic Inquiry and Word Count (LIWC)

e People of different gender, age, and social groups, and with different T SECRET
personality traits use function words differently. L‘f FE OF

A case against filtering stop words

PRONOUNS

"The more similar [they were] across all of these function words, the WHAT

WORDS
SA CAB@ ! T

higher the probability that [they] would go on a date in a speed

dating context," Pennebaker says. "And this is even cooler: We can

even look at ... a young dating couple... [and] the more similar [they]

are ... using this language style matching metric, the more likely e

[they] will still be dating three months from now." https://www.npr.org/sections/health-shots/2012/04/30/1515
e 2027000 predict dating success Ihe seerets In Ihe pronoun

S


https://www.npr.org/sections/health-shots/2012/04/30/151550273/to-predict-dating-success-the-secrets-in-the-pronouns
https://www.npr.org/sections/health-shots/2012/04/30/151550273/to-predict-dating-success-the-secrets-in-the-pronouns
https://www.npr.org/sections/health-shots/2012/04/30/151550273/to-predict-dating-success-the-secrets-in-the-pronouns

New concepts

N-gram: contiguous sequence of n items
Ngrams

Google Books Ngram Viewer

Graph these comma-separated | (The United States are+The United States have),(The United States | case-insensitive

phrases: ) .
between 1760 and 2008 from the corpus Engish [ with smoothing of 2 [3.

W Tweet

Embed Chart
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New concepts

Ngrams

great
place
stay
location

clean L]

host L
nice .
comfortable .
house L
apartment L
recommend .
home .
everything L
perfect L
space L]
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N-gram: contiguous sequence of n items

L place to_stay
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very clean_and

would definitely stay
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a great location
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great_place_to
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New concepts

Keyness words (or key words): words which occur

Keyness significantly more often in one group of texts than in another
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New concepts

A measure of weighting term
based on how important a

Tf-idf (term frequency-inverse document frequency) word is to a corpus.

great

5657
comfortable
1555

denver
396.96488
thames
20.51621

place
4670
house
1495

boston
153.55158
fenway
20.03909

stay location clean host nice
3872 3166 2669 1684 1653
apartment
1445
providence newport subway beaches t

147 .43047 100.90029 57 .25455 39.60106 25.53323
i
20.03909



Semantic networks

stayed 3eautiful

Based on co-occurrence of
terms (features) in the same
document. Also called feature
co-occurrence network
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Topic models

Automated clustering of the
text based on topical similarity

A live demo based on Russia’s
IRA tweets

https://www.cascadia-analytics.c

om/2018/08/12/ira-tweets1.html

Terrorism, Islam, Guns

2 Trump, Debates

3 Trump, (Fake) News

4 Taxes, Immigration

5 Obama, Middle East

6 Uninterpretable/Mix

7 Congressional votes,
Obamacare

8 Mueller Investigation

9 Uninterpretable/Mix

10 Immigration, Elections

Top 12 Words in Topic

liberals, stop, hate, violence, gun, antifa, guns, left, terrorists, people,
#islamkills, remember

life, god, donald_trump, #demdebate, #tcot, plan, #wakeupamerica,
#pjnet, power, boy, tonight, candidate

trump, president, cnn, white_house, report, news, claims, poll, fake_news,
voters, dem, makes

america, money, fight, stand, enlist, jobs, pay, join, illegals, free, freedom,
tax

obama, military, deal, change, speech, president, words, obamas, iran,
israel, death, trumps

law, racist, government, kids, public, race, takes, debate, california,
person, lose, planned_parenthood

trump, gop, bill, democrats, democrat, senate, breaking, republicans,
republican, judge, national, obamacare

clinton, russia, fbi, comey, hillary, mueller, russian, house, dnc, congress,
investigation, breaking

liberal, live, day, bad, mt, happy, school, night, city, fire, chicago, won

people, american, country, black, america, world, million, voted,


https://www.cascadia-analytics.com/2018/08/12/ira-tweets1.html
https://www.cascadia-analytics.com/2018/08/12/ira-tweets1.html

Topic models

LDA ( Latent Dirichlet Allocation (LDA)
model) is a commonly used topic
modeling algorithm.

The pitfalls of topic modeling
e Finding the best k (k =the
number of topics)
e interpretability

[1,]
[2,]
[3,]
[4.]
[5.]
[6.]
[7.]
[8.]
[9,]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16.]
[17.,]
[18,]
[19.]

rnn 1

Topic 1
"great"
"place"
"location"
"stay"
"clean"
"boston"
"apartment"”
"nice"
"host"
"comfortable"
"easy"
"recommend"”
"room"
"everything"
"definitely"
"close"
"good"
"perfect"
"walk"

"raal1u"

Topic 2
"great"
"place”
"stay"
"location"
"clean"
"house"
"host™"
"comfortable"
"home"
"newport"
"nice"
"perfect"
"us"
"everything"
"recommend"
"apartment"
"space"
"room"
"definitely"

"aacu"

Topic 3
"great"
"place"
"stay"
"location"
"clean"
"denver"
"home"
"space"
"house"
"nice"
"recommend"
"comfortable"
"host"
"definitely"
"everything"
"easy"
"perfect"
"close"
"downtown"

"ciinar"



