
1/14/2019 Automating the Google search for the web presence of 8000+ organizations

https://medium.com/@curiositybits/automating-the-google-search-for-the-web-presence-of-8000-organizations-54775e9f6097 1/6

Automating the Google search for the
web presence of 8000+ organizations

I recently worked on a spreadsheet containing a list of over 8500

nonpro�ts. For each nonpro�t, I wanted to get the URLs to its website,

Facebook page and Twitter account. The task is arduous, if done

without some sort of automation. In the below, I will show you how to

use a few lines of simple R scripts to get the task done.

Install R, RStudio and libraries.

R is an open-source data analytics engine, the lingua franca in data

mining, along with Python. RStudio is an integrated development

environment (IDE) for running R scripts and tracking outputs. You can

install it from here.

After you create a project in RStudio, you can use the following scripts

to install R libraries needed for the task. For example, rvest is a library

for simple web scrapping.

install.packages(“rvest”)
install.packages(“urltools”)

require("rvest")
require("urltools")

2. Load spreadsheet into R

My spreadsheet is called data.csv, and is located in the same folder

where the R project for this task is saved. I can use the following line to

import the spreadsheet. In R the imported spreadsheet is named d.

CuriosityBits Data Lab

Dec 8, 2016 · 4 min read

1.

https://www.r-project.org/about.html
https://www.python.org/
https://www.rstudio.com/products/rstudio/#Desktop
https://www.rstudio.com/products/rstudio/#Desktop
https://github.com/hadley/rvest
https://medium.com/@curiositybits?source=post_header_lockup
https://medium.com/@curiositybits

1/14/2019 Automating the Google search for the web presence of 8000+ organizations

https://medium.com/@curiositybits/automating-the-google-search-for-the-web-presence-of-8000-organizations-54775e9f6097 2/6

d <- read.csv(“data.csv”)
View(d)

View(d) will open the spreadsheet and you will see how the data are

structured.

To access a particular column, for example the �rst column which

contains the names of the organizations, simply run

d$OrganizationName

3. Start web scrapping — the simple version

We �rst create three new columns, named Website, Twitter and

Facebook respectively. We �ll the columns with NA as the placeholder

for the output from web scrapping.

d$Website <- “NA”
d$Twitter <- “NA”
d$Facebook <- “NA”

We then use the library rvest to make Google Search requests, with

each organization name as the search term. Here is a simple version of

the web scrapping function.

1/14/2019 Automating the Google search for the web presence of 8000+ organizations

https://medium.com/@curiositybits/automating-the-google-search-for-the-web-presence-of-8000-organizations-54775e9f6097 3/6

for (name in d$OrganizationName[1:2000]){

 print(paste0(“finding the url for:”,name))

 Sys.sleep(3)

 url1 = URLencode(paste0(“https://www.google.com/search?
q=",name))
 page1 <- read_html(url1)
 results1 <- page1 %>% html_nodes(“cite”) %>% html_text()
 result1 <- as.character(results1[1])

 d[d$OrganizationName==name,]$Website <- result1

}

In line 1, you will notice that we let R to parse from the 1st through
the 2000th cell in the column called OrganizationName (you can of

course change the numbers to suit your need). We also let R to print
(a.k.a, display in the R console) each organization name.

Sys.sleep(3) is put in so that R will rest for 3 seconds after each

scrapping request.

url1 is the unique Google search url based on a given search term. It is

https://www.google.com/search?q=, followed by a search term. So, to

search red cross, the url is: https://www.google.com/search?

q=red+cross (note: the space between two words is replaced by + or

%20).

page1 <- read_html(url1) is using the read_html function in rvest to

download the html code using a search url. results1 contains the html

output. And result1 is the �rst search result.

4. Web scrapping — full features

The simple web scrapping function we’ve created from the above step

only returns website URLs. What about Facebook pages and Twitter

accounts? We can add a few lines to the function to do more advanced

scrapping. The idea is simple: we add two more Google searches, each

is limited to a speci�c domain. For example, by adding

https://www.google.com/search?q=
https://www.google.com/search?q=
https://www.google.com/search?q=red+cross

1/14/2019 Automating the Google search for the web presence of 8000+ organizations

https://medium.com/@curiositybits/automating-the-google-search-for-the-web-presence-of-8000-organizations-54775e9f6097 4/6

“site:twitter.com” to the search url, we can get search results strictly

from twitter.com.

The complete web scrapping function will be like this:

for (name in d$OrganizationName[1531:2000]){
 print(paste0(“finding the url for:”,name))
 Sys.sleep(3)

 url1 = URLencode(paste0(“https://www.google.com/search?
q=",name))
 page1 <- read_html(url1)
 results1 <- page1 %>% html_nodes(“cite”) %>% html_text()
 result1 <- as.character(results1[1])
 d[d$OrganizationName==name,]$Website <- result1

 print(paste0(“finding the Twitter url for:”,name))
 url2 = URLencode(paste0(“https://www.google.com/search?
q=",gsub(" ","+",name),"+site:twitter.com"))
 page2 <- read_html(url2)
 results2 <- page2 %>% html_nodes(“cite”) %>% html_text()
 result2 <- as.character(results2[1])
 d[d$OrganizationName==name,]$Twitter <- result2

 print(paste0(“finding the Facebook url for:”,gsub("
","+",name)))
 url3 = URLencode(paste0(“https://www.google.com/search?
q=",gsub(" ","+",name),"+site:facebook.com"))
 page3 <- read_html(url3)
 results3 <- page3 %>% html_nodes(“cite”) %>% html_text()
 result3 <- as.character(results3[1])
 d[d$OrganizationName==name,]$Facebook <- result3
}

Caveats

You may not always get accurate search result — the �rst website may

not be related to your target organization at all. That’s when you need

data cleaning — part of it can be automated as well!

You can create a new column to store the second website in a returned

search result. For example, you can add the following two lines to the

function.

result4 <- as.character(results1[2])
d[d$OrganizationName==name,]$Alternative_result <- result4

https://www.google.com/search?q=
https://www.google.com/search?q=
https://www.google.com/search?q=

1/14/2019 Automating the Google search for the web presence of 8000+ organizations

https://medium.com/@curiositybits/automating-the-google-search-for-the-web-presence-of-8000-organizations-54775e9f6097 5/6

Since all organizations on my list are nonpro�ts. Their website URLs

should end with .org. Using the following, I can create a new data

frame (i.e., spreadsheet) to include only organizations whose URLs

contain “.org”.

c<-d[grep(“.org”, d$Website),]

In the end, we probably cannot get away without having human eyes

check the data. But now the task is far less daunting.

1/14/2019 Automating the Google search for the web presence of 8000+ organizations

https://medium.com/@curiositybits/automating-the-google-search-for-the-web-presence-of-8000-organizations-54775e9f6097 6/6

