1/14/2019 Automating the Google search for the web presence of 8000+ organizations

Automating the Google search for the
web presence of 8000+ organizations

CuriosityBits Data Lab
Dec 8, 2016 - 4 min read

I recently worked on a spreadsheet containing a list of over 8500
nonprofits. For each nonprofit, I wanted to get the URLs to its website,
Facebook page and Twitter account. The task is arduous, if done
without some sort of automation. In the below, I will show you how to
use a few lines of simple R scripts to get the task done.

1. Install R, RStudio and libraries.

R is an open-source data analytics engine, the lingua franca in data

mining, along with Python. RStudio is an integrated development

environment (IDE) for running R scripts and tracking outputs. You can
install it from here.

After you create a project in RStudio, you can use the following scripts
to install R libraries needed for the task. For example, rvest is a library
for simple web scrapping.

install.packages(“rvest”)
install.packages(“urltools”)

require("rvest")
require("urltools")
2. Load spreadsheet into R
My spreadsheet is called data.csv, and is located in the same folder

where the R project for this task is saved. I can use the following line to
import the spreadsheet. In R the imported spreadsheet is named d.

https://medium.com/@curiositybits/automating-the-google-search-for-the-web-presence-of-8000-organizations-54775¢9f6097 1/6

https://www.r-project.org/about.html
https://www.python.org/
https://www.rstudio.com/products/rstudio/#Desktop
https://www.rstudio.com/products/rstudio/#Desktop
https://github.com/hadley/rvest
https://medium.com/@curiositybits?source=post_header_lockup
https://medium.com/@curiositybits

1/14/2019 Automating the Google search for the web presence of 8000+ organizations

d <- read.csv(“data.csv”)
View(d)

View(d) will open the spreadsheet and you will see how the data are

structured.
3] Get url for organizations.R* id
/" Filter
OrganizationName ect yName ploy ificati InCareOfName

1 1To3Inc 20-1292917
2 1 Voice 46-5516669 Amanda Sampson
3 10 Seconds Inc 54-1706480
4 1000 Friends Of Colorado Inc 84-1294134 John Spitzer
5 1000 Friends Of Florida Inc 59-2761163
6 1000 Friends Of Fresno 77-0357472
7 1000 Friends Of lowa 42-1474232
8 1000 Friends Of Maryland Inc 52-1864759 Dru Schmidt-Perkins
9 1000 Friends Of Massachusetts Inc 22-2988006

10 1000 Friends Of Metropolitan Detroit 43-1954882 Katherine Brady

11 1000 Friends Of New Mexico 85-0431150

Showing 1 to 12 of 8,688 entries

To access a particular column, for example the first column which

contains the names of the organizations, simply run

d$0rganizationName

3. Start web scrapping—the simple version

We first create three new columns, named Website, Twitter and
Facebook respectively. We fill the columns with NA as the placeholder

for the output from web scrapping.

d$Website <— “NA”
d$Twitter <— “NA”
d$Facebook <-— “NA”

We then use the library rvest to make Google Search requests, with
each organization name as the search term. Here is a simple version of
the web scrapping function.

https://medium.com/@curiositybits/automating-the-google-search-for-the-web-presence-of-8000-organizations-54775¢9f6097 2/6

1/14/2019 Automating the Google search for the web presence of 8000+ organizations

for (name in d$0rganizationName[1:2000]){

print(paste@(“finding the url for:”,name))
Sys.sleep(3)

urll = URLencode(paste@(“https://www.google.com/search?
g=",name))

pagel <- read_html(urll)

resultsl <- pagel %>% html_nodes(“cite”) %>% html_text()

resultl <- as.character(results1[1])

d[d$0rganizationName==name,]$Website <- resultl

In line 1, you will notice that we let R to parse from the 1st through
the 2000th cell in the column called OrganizationName (you can of
course change the numbers to suit your need). We also let R to print

(a.k.a, display in the R console) each organization name.

Sys.sleep(3) is put in so that R will rest for 3 seconds after each
scrapping request.

url1 is the unique Google search url based on a given search term. It is
https://www.google.com/search?q=, followed by a search term. So, to

search red cross, the url is: https://www.google.com/search?

g=red+cross (note: the space between two words is replaced by + or
%20).

pagel <-read_html(urll) is using the read_html function in rvest to
download the html code using a search url. results1 contains the html
output. And result] is the first search result.

4. Web scrapping—full features

The simple web scrapping function we’ve created from the above step
only returns website URLs. What about Facebook pages and Twitter
accounts? We can add a few lines to the function to do more advanced
scrapping. The idea is simple: we add two more Google searches, each

is limited to a specific domain. For example, by adding

https://medium.com/@curiositybits/automating-the-google-search-for-the-web-presence-of-8000-organizations-54775¢9f6097 3/6

https://www.google.com/search?q=
https://www.google.com/search?q=
https://www.google.com/search?q=red+cross

1/14/2019 Automating the Google search for the web presence of 8000+ organizations

“site:twitter.com” to the search url, we can get search results strictly

from twitter.com.

The complete web scrapping function will be like this:

for (name in d$0rganizationName[1531:2000]){
print(paste@(“finding the url for:”,name))
Sys.sleep(3)

urll = URLencode(paste@(“https://www.google.com/search?
g=",name))

pagel <— read_html(urll)

resultsl <- pagel %>% html_nodes(“cite”) %>% html_text()

resultl <- as.character(results1[1])

d[d$0rganizationName==name,]$Website <- resultl

print(paste@(“finding the Twitter url for:”,name))

url2 = URLencode(paste@(“https://www.google.com/search?
g=",gsub(" ","+",name),"+site:twitter.com"))

page2 <- read_html(url2)

results2 <— page2 %>% html_nodes(“cite”) %>% html_text()

result2 <- as.character(results2[1])

d[d$0rganizationName==name,]$Twitter <- result2

print(paste@(“finding the Facebook url for:”,gsub("

,'+", name)))
url3 = URLencode(paste@(“https://www.google.com/search?
g=",gsub(" ","+",name),"+site: facebook.com"))
page3 <- read_html(url3)
results3 <— page3 %>% html_nodes(“cite”) %>% html_text()
result3 <—- as.character(results3[1])
d[d$0rganizationName==name,] $Facebook <- result3

}
Caveats
You may not always get accurate search result—the first website may
not be related to your target organization at all. That’s when you need

data cleaning—part of it can be automated as well!

You can create a new column to store the second website in a returned
search result. For example, you can add the following two lines to the

function.

result4 <- as.character(results1([2])
d[d$0rganizationName==name,]$Alternative_result <- result4

https://medium.com/@curiositybits/automating-the-google-search-for-the-web-presence-of-8000-organizations-54775¢9f6097 4/6

https://www.google.com/search?q=
https://www.google.com/search?q=
https://www.google.com/search?q=

1/14/2019 Automating the Google search for the web presence of 8000+ organizations

Since all organizations on my list are nonprofits. Their website URLs
should end with .org. Using the following, I can create a new data
frame (i.e., spreadsheet) to include only organizations whose URLSs

contain “.org”.

c<-d[grep(“.org”, d$Website),]

In the end, we probably cannot get away without having human eyes

check the data. But now the task is far less daunting.

https://medium.com/@curiositybits/automating-the-google-search-for-the-web-presence-of-8000-organizations-54775¢9f6097 5/6

1/14/2019 Automating the Google search for the web presence of 8000+ organizations

https://medium.com/@curiositybits/automating-the-google-search-for-the-web-presence-of-8000-organizations-54775¢9f6097 6/6

