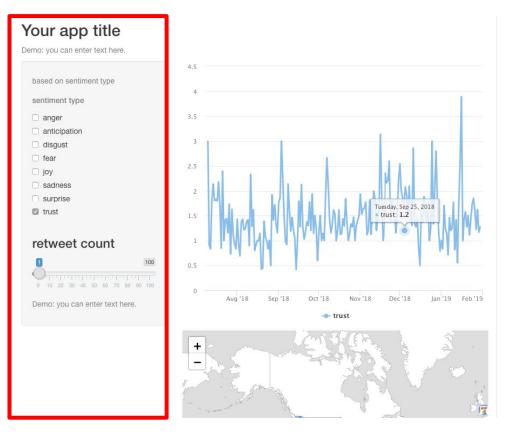

Interactive visualization: R Shiny


Weiai Xu (Wayne), PhD Assistant Professor Department of Communication, UMass-Amherst Email: weiaixu@umass.edu curiositybits.cc

Examples of R Shiny apps

https://curiositybits.shinyapps.io/PH_Tracker_dashboard/

Components in a R Shiny app

Sidebar Panel: contains one or multiple *control widgets*

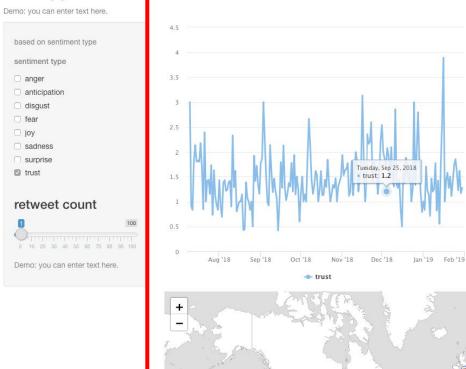
Allow users to make selection or enter values

Components in a R Shiny app

http://127.0.0.1:3771 🔊 Open in Browser 🥝

Basic widgets

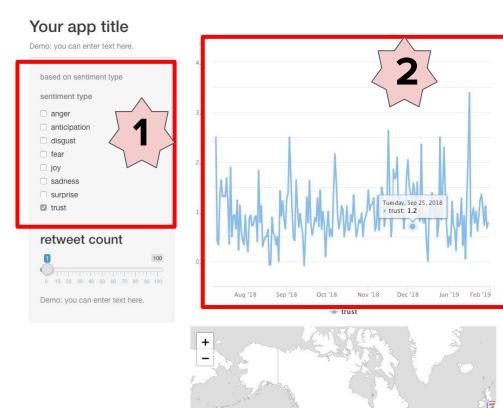
Buttons Action	Single checkbox Choice A	Checkbox group Choice 1 Choice 2	Date input 2014-01-01	Basic widgets
Submit Date range	File input	Choice 3	Numeric input	available in R
2017-06-21 to 2017-06-21	Browse No file selected	Note: help text isn't a true widget, but it provides an easy way to add text to accompany other widgets.	1	Shiny
 Choice 1 Choice 2 Choice 3 	Select box Choice 1 -	Sliders 0 50 100 0 10 20 30 40 50 60 70 80 90 100	Text input Enter text	


0 10 20 30 40 50 60 70 80 90 100

Publish •

https://shiny.rstudio.com/tutorial/written-tutorial/lesson3/

Components in a R Shiny app


Your app title

Main Panel: contains visual outputs

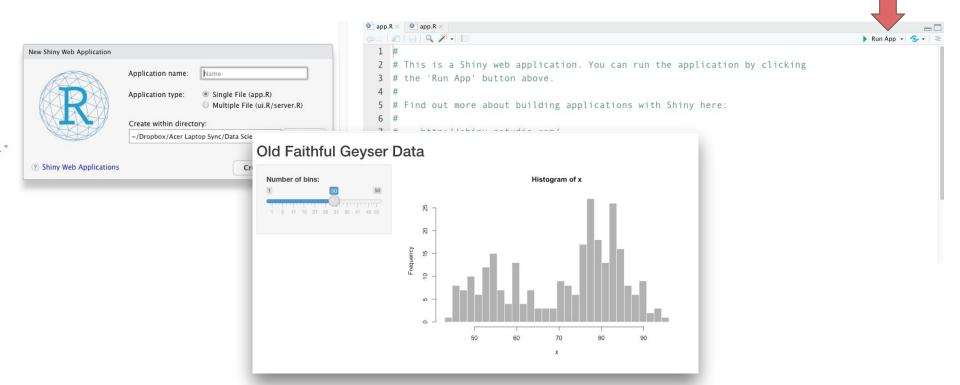
Outputs change in response to user selection

How does a R Shiny app work

When a user makes a selection in the Sidebar Panel, it creates **an input value.**

The input value is used to select cases for visualization

What files does a R Shiny app consist of



Each app has a stand-alone folder

Name		^
🖀 app.R 📃	app.R is the app script	0
geocodes.csv	Data files	0
Tala ines		
🖀 workflow.R 🗾	Backend code for	0
	pre-processing data	

Create an example

Before you create an app, make sure the *shiny* library is installed and loaded

Test example files

Example files are available on Moodle

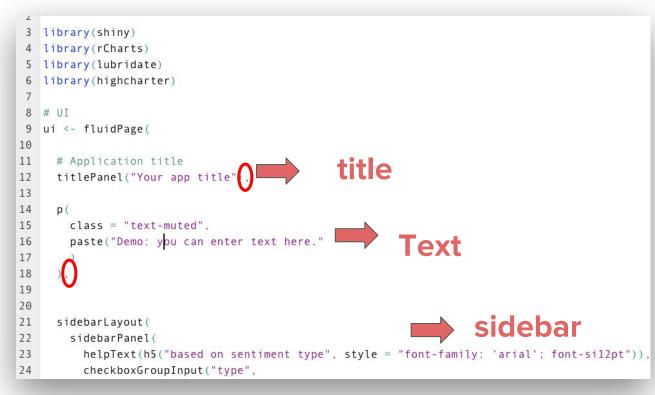
Create a folder in your laptop and move app.R and associated data files to the folder. Then open app.R in RStudio.

Make sure the example app works on your laptop

Name	^
🖺 app.R	\bigcirc
🔊 geocodes.csv	\bigcirc
🖬 tweets.csv	۲
workflow.R	\bigcirc

The **ui** part and the **server** part

```
3 library(shiny)
 4 library(rCharts)
 5 library(lubridate)
   library(highcharter)
 6
 7
   # UI
 8
 9
   ui <- fluidPage(
10
     # Application title
11
     titlePanel("Your app title"),
12
13
14
     p(
       class = "text-muted".
15
       paste("Demo: you can enter text here."
16
17
18
      ).
19
20
21
      sidebarLayout(
22
        sidebarPanel(
23
```


checkboxGroupInput("type".

4

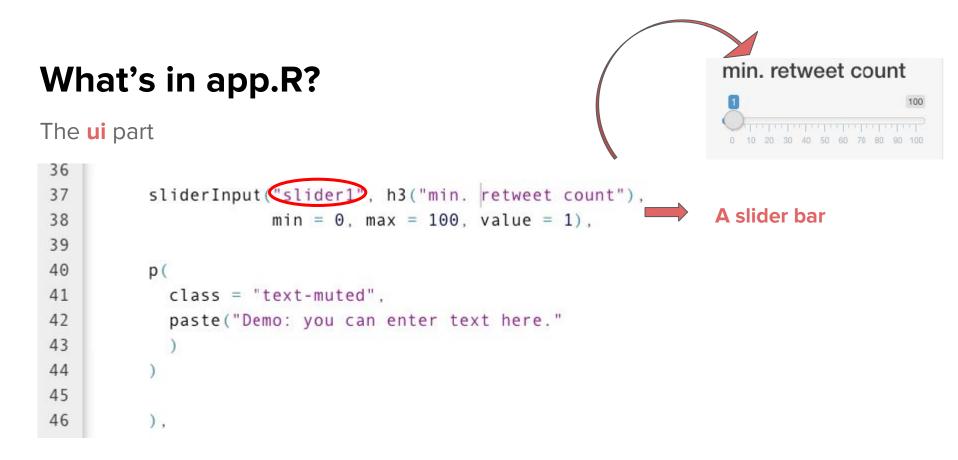
24

```
59 # SERVER
                                                 60 - server <- function(input, output) {
                                                 61
                                                 62
                                                       senti data <- read.csv("senti aggregated.csv", header = TRUE)</pre>
                                                 63
                                                 64
                                                       geocodes <- read.csv("geocodes.csv", header = TRUE)</pre>
                                                 65
                                                 66
                                                       senti data$day <- as.Date(senti data$day)</pre>
                                                 67
                                                 68 -
                                                       output$chart1 <- renderHighchart({</pre>
                                                 69
                                                 70
                                                         highchart() %>%
                                                           hc add series(data= senti_data[senti_data$variable %in% input$type,],"line", hcaes(x =
                                                 71
                                                 72
                                                           hc_xAxis(type = "datetime")
                                                 73
                                                       })
                                                 74
                                                 75 -
                                                       output$mymap <- renderLeaflet({</pre>
                                                 76
                                                 77
                                                         usericon <- makeIcon(
                                                           iconUrl = geocodes$profile image url,
                                                 78
                                                           iconWidth = 15, iconHeight = 15
                                                 79
helpText(h5("based on sentiment type", style = "font-family: 'arial'; font-si12pt")),
```

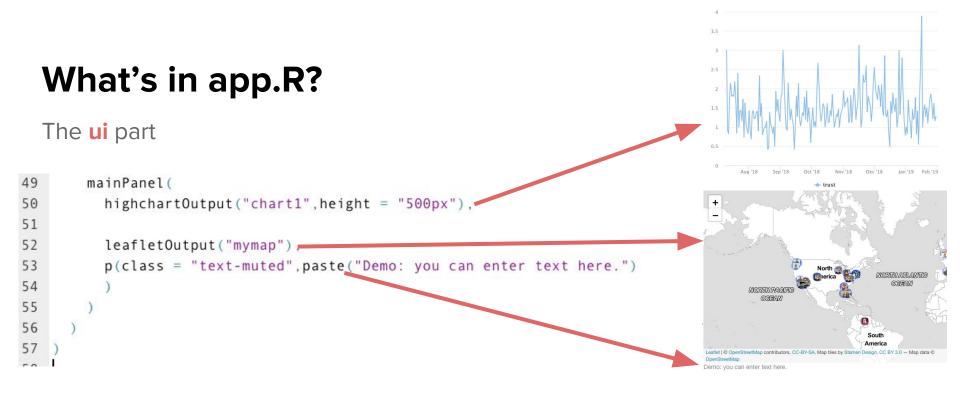
The **ui** part

Q: What should I do if I want to change the app name to *Class Demo* and add an introduction?

The **ui** part


Your app title

based on sentiment type


sentiment type

anger

When a user selects anger, the selection creates an input value. The value is the string *anger*, the input value is stored as input\$type

Every time a user sets on a number, it creates an input value. The input value is stored as input\$slider1

What to visualize

The server part

Do you remember the two input values created from user selection?

input\$type
input\$slider1

7 1

The server part: import data, process data, and create visualization

```
59 # SERVER
50 - server <- function(input, output) {
51
                                                                            Import the two data files from
52
     senti data <- read.csv("senti aggregated.csv", header = TRUE)</pre>
53
                                                                            your app folder.
54
     geocodes <- read.csv("geocodes.csv", header = TRUE)
55
                                                                               Clean and standardize the data
56
     senti data$day <- as.Date(senti data$day)</pre>
                                                                               <u>if necessary.</u>
57
58 .
     output$chart1 <- renderHighchart({</pre>
59
70
       highchart() %>%
71
         hc add series(data= senti data[senti data$variable \%in\% input$type,],"line", hcaes(x = day, y = value, group=variable)) \%>\%
72
         hc xAxis(type = "datetime")
73
     })
```

The part where you create a highchart showing sentiment trends.

```
c- function(input, output) {
```

_data <- read.csv("senti_aggregated.csv", header =

```
les <- read.csv("geocodes.csv", header = TRUE)</pre>
```

```
_data$day <- as.Date(senti_data$day)
```

```
$chart1 <- renderHighchart({
```

1	date_label 🎈	screen_name 🍦	variable 🎈	value 🤤	day 🌐	day_show
1	2018-07-01	TheDemocrats	anger	1.00000000	2018-07-01	2018-07-01
2	2018-07-02	TheDemocrats	anger	0.47619048	2018-07-02	2018-07-02
3	2018-07-03	TheDemocrats	anger	0.64285714	2018-07-03	2018-07-03
4	2018-07-04	TheDemocrats	anger	3.00000000	2018-07-04	2018-07-04
5	2018-07-05	TheDemocrats	anger	0.76923077	2018-07-05	2018-07-05
6	2018-07-06	TheDemocrats	anger	0.75000000	2018-07-06	2018-07-06
7	2018-07-07	TheDemocrats	anger	1.00000000	2018-07-07	2018-07-07
8	2018-07-08	TheDemocrats	anger	0.40000000	2018-07-08	2018-07-08
9	2018-07-09	TheDemocrats	anger	0.77777778	2018-07-09	2018-07-09
0	2018-07-10	GOP	anger	0.33333333	2018-07-10	2018-07-10
1	2018-07-10	TheDemocrats	anger	1.00000000	2018-07-10	2018-07-10

```
nchart() %>%
:_add_series(<mark>data=__senti_data[senti_data$variable %in% input$type,]</mark>,"line", hcaes(x = day, y = value, group=vari
:_xAxis(type = "datetime")
```

Use input\$type as the filtering criteria to select cases from senti_data

92

The server part: import data, process data, and create visualization

```
75 -
      output$mymap <- renderLeaflet({</pre>
76
77
        usericon <- makeIcon(
78
          iconUrl = geocodes$profile image url,
          iconWidth = 15, iconHeight = 15
79
80
81
82
        leaflet(data = geocodes[geocodes$retweet count >= input$slider1,]) %>%
83
84
          addTiles() %>%
85
          setView(lng = -98.35, lat = 39.50, zoom = 2) %>%
86
          addMarkers(lng = \simlng, lat = \simlat,popup = \sim as.character(text),icon = usericon) %>%
87
          addProviderTiles("Stamen.TonerLite") %>% #more layers:http://leaflet-extras.github.io/leafle
88
          addCircleMarkers(
89
            stroke = FALSE, fillOpacity = 0.5)
90
     })
91
```

Use input\$slider1 as the filtering criteria to select cases from geocodes

In-class practice

Make sure the example app works on your laptop See if you can add a new slider bar with the input value named "slider3" and the help text "min. Favorite count."

Publish a R Shiny app

https://shiny.rstudio.com/articles/shinyapps.html

More resources

https://shiny.rstudio.com/articles/basics.html

Other visualization options

Using R Markdown: https://rmarkdown.rstudio.com/